B L3 . GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
"l" %) (Autonomous)
" Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)

Madhurawada :: Visakhapatnam — 530 048
PROBLEM SOLVING USING C
LB.Tech. —II SEM- EEE End Examination

1. All questions carry equal marks
2. Must answer all parts of the question at one place
Date : 25-06-2025 Time: 3Hrs. ’ Max Marks: 70

...

UNIT-I
1. (a) Outline and Explain different data types with an example for each. [TM]

DATA TYPESIN C

A datatype is a keyword/predefined instruction used for allocating memory for data. A data type
specifies the type of data that a variable can store such as integer, floating, character etc. It used
for declaring/defining variables or functions of different types before to use in a program.

There are three main data types are in C programming:
[. Primitive (Primary) data types.
2. Derived data types.
3. User-defined data types (UDTs).

1.Primitive or built-in data types are used to represent simple data values, including characters,
integers, void, float and double data. C language supports both signed and unsigned literals.

» Character (char): The most basic data type in C. It stores a single character and requires a single
byte of memory in almost all compilers.
Ex: In a program storing person's first initial, the variable would be a character (eg.'A",'7','$', ' ").

« Integer (int): As the name suggests, an int variable is used to store an integer as whole numbers
(positive, negative, or zero).

Ex: In a program counting the number of items in a store, the variable holding that count would
likely be an integer (e.g., 10, -5, 0).

* Floating-Point (float): It is used to store decimal numbers (numbers with floating point value).
Ex: In a program calculating the average temperature of a city, the temperature variable would
be a floating-point number (e.g., 25.5).

* Double (double): It is used to store decimal numbers (numbers with floating point value) with
double precision.
Ex: similar to float but longer in length .double num2 = 3.198728764857268945

* Boolean (bool): Booleans represent logical values, either True or False.
* Void (veid) ~ This type indicates no value or empty value.

In addition to the above data types, C language also support data types like date and time
together in a specific format, enumerated (a set of predefined values), long (a long positive or
negative sequence of integers) and short (a short positive or negative sequence of integers).

2.Derived Data Type: These data types are derived from the primitive data types. They include
arrays, pointers and tunctions.
* Array: A list with multiple elements of the same type and mentioned in a specific order.

b\ - (Autonomous)
~2 4 ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)

el

B % 1. GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
o

Madhurawada :: Visakhapatnam — 530 048
Ex. The total number of elements in an array a[| = {1,2,3,4,5},

3.User-Defined Data Types : These data types in C is that a user can define and derive from an
existing data type. It includes structure, union, typedef and enum.

» Structures allow users to group items of different data types into a single type.
» enum is useful to create custom data types with a set of named integer constants.
» Typedef is used to rename existing data types.

+ Union data type can contain elements of different data types, with all members of the union
stored in the same memory location.

(b) Evaluaie the following expression a*b+c/d-e and describe the concept of arthematic
precedence and associativity. [TM]

o Arthematic Precedence : Arithmetic Operators are evaluated left to right using the
precedence of operator when the expression is written without the paranthesis.
precedence,
They are two levels of arithmetic operators in C.
1. High Priority * / %
2. Low Priority + -.
Using Arthematic a*b and ¢/d are computed before the addition.

e Associativity: Associativity specifies the order in which the operators are evaluated with the
same precedence in a expression. Commonly, operators are either left-associative (evaluated
from left to right) or right-associative (evaluated from right to left). In the example a*b+c/d,
the * and / operators are left-associative, so a*bis evaluated before c/d. The + operator is

also left-associative, so the entire expression is evaluated as: ((a * b) + (c/ d)).
Program:

#include <stdio.h>

int main() {
inta=10,b=5,¢=20,d=2,e=3;
intresult=a*b+c/d-e;
printf("Result: %d\n", result);
return 0;

}

Calculation:

The expression a * b + ¢/ d - e is evaluated according to operator precedence:
a*b=(10* 5) is calculated first, resulting in 50.
c¢/d=(20/2)is calculated next, resulting in 10.
Then, the results are combined: 50 + 10 - 3.
Finally, the result (60 - 3) is 57.

(OR)

e c % GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
e "/il* (Autonomous)
252 =" Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Visakhapatnam — 530 048

2. (a) With a suitable example explain the basic structure of a C program.
General Structure of a C program:
/* Documentation section */

/* Link section */
/* Definition section */

/* Global declaration section */
main()

{
Declaration part
Executable part (statements)

}
/* Sub-program section */

Explanation:

» Documentation Section: The documentation section is used for displaying any information
about the program like the purpose of the program, name of the author, date and time written
etc, and this section should be enclosed within comment lines. The statements in the
documentation section are ignored by the compiler.

» Link Section: The link section consists of the inclusion of header files.

> The definition section consists of macro definitions, defining constants etc.

The #define preprocessor directive is used to define constant or micro substitution. It can use
any basic data type. Ex. #define PI 3.14

> Anything declared in the global declaration section is accessible throughout the program, i.e.
accessible to all the functions in the program.

» main() function is mandatory for any program and it includes two parts, the declaration part
and the executable part.

> The last section, i.e. sub-program section is optional and used when we require including
user defined functions in the program.

Example:

1. #include <stdio.h>

2. #include <conio.h>

3. void main()

{

4.printf("Hello C Language");

5.getch();

}

1. #include <stdio.h> - includes the standard input output library functions. The printf()
function is defined in stdio.h .

2. #include <conio.h> - includes the console input output library functions. The getch()
function is defined in conio.h file.

3. void main() - function is the entry point of every program in ¢ language. The void

keyword specifies that it returns no value.

The printf()- function is used to print data on the console.

5. The getch() - function asks for a single character. Until you press any key, it blocks the
screen.

Ee

(b) What do you mean by type conversions? Explain different type conversions with an
example for each. [TM]
Type conversion in C refers to the process of changing a variable from one data type to
another. They are of two types.

A) Implicit type conversion can be done automatically by the compiler. This type of conversion
is required when different data types are used in an expression or assignment, and the compiler
automatically converts one to match the other.

A58 % GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

wr ‘;,.y (Autonomous)

\‘:,:‘:D_..‘:_/ ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam})
' Madhurawada :: Visakhapatnam — 530 048

Example:

#include <stdio.h>

int main() {

int num_int = 10;

float num_float;

num_float = num_int; // Implicit conversion from int to float

printf("Integer value: %d\n", num_int);

printf("Float value after implicit conversion: %f\n", num_float);

return 0,

}

Output:

Integer value: 10

Float value after implicit conversion: 10.000000

B) Explicit type conversion also known as casting, is when the programmer explicitly specifies
the désired data type using a cast operator. This is done using the cast operator, which is the
desired data type enclosed in parentheses, followed by the variable to be converted.

Example:
#include <stdio.h>
int main() {
float num_float = 10.5;
int num_inl;
num_int = (int) num_float; // Explicit conversion from float to int
printf("Float value: %fin", num_float);
printf("Integer value after explicit conversion: %d\n", num_int);
return 0;
}

Output:

Float value: 10.500000

Integer value after explicit conversion: 10

UNIT-II

3. (a) List and explain decision making using different if statements, [7M]
A statement that controls the sequence of statement execution, depending on the value of a integer
expression.

if Statement: The if Statement may be implemented in different forms.
1: simple if statement. 2: if —else statement 3: nested if-else statement. 4: else if ladder.

1. if statement. The if statement controls conditional branching. The body of an if statement is
executed if the value of the expression is nonzero. If the condition/expression is true, then the
true statement will be executed otherwise the true statement block will be skipped and the
execution will jump to the statement-x.

Syntax :)
if(condition/expression) e
{ l""
true statement; = ‘—'
} —=]
statement-x; -

5 PO
. L

Ny Y GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

3 4 [*,,,JA (Autonomous)

\' -?-:-_;_;‘-'_f.'—',’J Approved by AICTE, New Dethi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada - visakhapatnam — 530 048

2. If-else statement: It is used to carry out one of the two possible actions depending on the

outcome of a logical test. The else portion is optional.

Syntax :

if (condition/ expression) =y
:

true statement; 1 T |-
E=n

ilse I_F‘*’r/——l
{

false statement;

} £icaw Duigeame 01 F s

statement-x;
Here expression is a logical expression enclosed in parenthesis. if expression is true statement 1
or statement 2 is a group of statements ,they are written as a block using the braces { }-
3. Nested if-else statement: Within if block or else block another if - else statement can come. Such
statements are called nested if statements.
Syntax : -
if{condition-1) {
if (condition-2) {

statement-1; e N
r]
else { e X PN
statement-2; mr' ;\ ' 0 rjrb
"‘ = B B B
else { L i
{ e

statement-3; &

statement-X;
If the condition-1 s false, the statement-3 and statement-x will be executed. Otherwise it

continues to perform the sccond test. If the condition-2 is true, the true statement-1 will be
executed otherwise the statement-2 will be executed and then the control is pransferred to the
statement-x.

4 Flse-if ladder: The if else-if statement is used to execute one code from multiple conditions.
Inorder to create a situation in which one of several courses of action is executed we use ladder —

if statements.
Syntax : p——
if(condition-1) { e
statement-1; .]._
] P NS e
else if (condition-2) { N d o
statement-2; i Y -
} x‘-““‘ L‘—F—”.I_ e} '!W"
else if (condition-3) { Y o
statement-3; " =

else if (condition—n) {
statement-n,

else {
default-statement;

statement-X;

B

by
o “:ce,, GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
L o / (Autonomous)
s/) . :))
_— ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Visakhapatnam — 530 048

(b) Write a C program to copy one string to another with and without using String
manipulation functions. [TM]

e Copying a String Using strepy() (String Manipulation Function): The strepy() function,
found in the <string.h> header, offers a straightforward way to copy strings.

Program-1: (Using String function)

#include <stdio.h>

#include <string.h> // Required for strepy()

int main() {
char source[] = "Hello, World!";
char destination[20];

/I Copy the contents of 'source' to 'destination’
strepy(destination, source);
printf("Original string: %s\n", source);
printf("Copied string: %s\n", destination);
return 0;

}

Output:

Original string: Hello, World!

Copied string: Hello, World!

e Copying a String Without Using String Manipulation Functions: This method involves
iterating through the source string character by character and copying each to the destination
string until the null terminator (\0) is encountered. The null terminator must also be copied to
ensure the destination string is properly terminated.

Program-2: (Without String function)
#include <stdio.h>

int main() {
char source[] = "Hello, World!";
char destination[30];
nti=0;

// Loop until the null terminator of the source string is reached
while (source[i] 1="0") {
destination[i] = source[i];
i++;
}
// Null-terminate the destination string
destination[i] = \0";
printf{"'Original string: %s\n", source);
printf("Copied string: %s\n", destination);
return 0;
}
Output:
Original string: Hello, World!; Copied string: Hello, World!

(OR)

LLEGE OF ENGINEERING FOR WOMEN

‘1. GAYATRI VIDYA PARISHAD cO
(Aulonomous)
University, Visakhapatnam)

. Affilinted to Andhra
530 048
(T™]

~ New Dellu and Permanently
es using arrays.

T Madhurawada = Visakhapatnam -
d multiplication of two matric

4. (a) Writea C program to fin
#include <gtdio.h>

int main() {
intrl, cl, 12, c2;

inti, . ks

/| Get dimensions of the first matrix
printf("Enter rows and columns for the first matrix: ")
scanf("%d %d", &1, &cl);
/| Get dimensions of the second matrix

"Enter rows and columns for the s

)
Approved by AICTE,

econd matrix: ");

printf(’
scanf("%d %d", &12, &c2);
/] Check if matrix multiplication is possible
while (c1 1=12) {
matrix not equal to row of second matrix.\n");

printf("Error
for the first matrix again: ");

rintf("Enter rows and columns

scanf("%d %od", &rl, &cl)i
for the second matrix again: ")

rintf("Enter Yows and columns
scanf("%d %d", &2, &c2);

i
int firstMatrix(r] ells
int s.econdMalrix{rZ][cZ];
int resultMatrix[r 1[c2):
printf("\nFnter elements of the first matrix:n"); // Get ele
for(i=051< 1z ++)
for (=0sj <cls H L
rintf("Enter element a%d%d: " i+ 1T 1)
scanf("%d", &firstMatrix]il[i]):

}
econd matrix:\n"); /| Get eleme

i

printf("\nEnter elements of the s

for (i =02 i< 2 +4) §

for (j = 0:] < €2 ++) {

printf("Enter clement b%d%d: ", i+1,j+D;
scanf("%od", &secondMatrix[i]U‘,);

ments of the first matrix

nts of the second matrix

}
/| Initialize elements of result matrix to 0
for(i=0;i<r1;++i){
for(j= 0:j<¢2; ++) §
resultMatrix[illil = 0,

}

/| Perform matrix m ultiplication

for (i=0;i<rl; +H) {
for (=03 <2) {
for (k=0:K < cls++Kk) |
resultMatrix[i]{i] += firstMatrix{i]

}
}

}
/I Display the result matrix
print{'("\nResuhant Matrix:\n");

for (i=0:1< rl:) §

[k} * secondMatrix[k][]];

ﬂi‘g GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

: g‘ J (Autonomous)
\1}:.\&:"__ Z# Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
o Madhurawada :: Visakhapatnam — 530 048
for j=0;j <c2; +H)) {
printf("%d ", resultMatrix{i]{j1);

printf("\n");

}

return 0;

!
Output:

Enter rows and columns for the first matrix: 2 2
Enter rows and columns for the second matrix: 2 2
Enter elements of the first matrix:

Enter element all: 1

Enter element al2: 2

Enter element a21: 3

Enter element a22: 4
Enter elements of the second matrix:

Enter element bl1: 5

Enter element b12: 6

Enter element b21: 7

Enter element b22: 8

Resultant Matrix:

1922

43 50

(b) Compare and contrast while and do-while loop. Give example for each. [TM]
LOOPING 1t is to execute a group of instructions repeatedly, a fixed no of times or until a specified
condition is satisfied. The while loop is often called the entry verified loop, whereas the do-
while loop is an exit verified loop. while statement carrys out a set of statements to be executed
repeatedly until some condition is satisfied.
» The while keyword is followed by a parenthesis, in which there should be a
Boolean expression. Followed by the parenthesis, there is a block of statements
inside the curly brackets.
> The statement is executed so long as the expression is true. Statement can be
simple or compound.

Syntax :
while (expression){
statement(s);

while{ condition §

{
conditionul code

I conditivn

Example for while loop: is tros

#include<stdio.h> m m—"
)
®

int main() {

int a=1;

while(a <=5) {
printf("Hello World \n");
at+,

}

printf("End of loop");

return 0; }

Output

Hello World

Hello World

. -l":\ik GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING F OR WOMEN

g (Autonomous)

—- g ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Visakhapatnam — 530 048

Hello World
Hello World
Hello World
End of loop

* do while statement carrys out a set of statements to be executed repeatedly so long as a

condition is trye,
Syntax :
do
{

statement(s);
}
while(condition);
Example for while loop:
#include<stdio.h>
int main() {
int a=0; /Loop variable declaration and initialization
/{do while loop
do
{
printf("Hello World \n");
at++;

}
while(a < 3);
return 0;

}

Output:

Hello World
Hello World
Hello World

do{
conditional code ;
} while (condition)

It candition
is true

It condition
Is Yalge

THE DIFFERENCE BETWEEN while loop AND do — while loop
1) In the while loop the condition is tested in the beginning whereas in the other case it is

done at the end.

2) In while loop the statements in the loop are executed only if the condition is true whereas
in do — while loop even if the condition is not true the statements are executed atleast once.

UNIT-111

S. (a) What are the advantages of a function? List and explain different parameter passing

methods to a function,
DEFINITIONS OF FUNCTIONS:

[7M]

» Self-contained program segment that is placed separately from the main program to
perform some specific well defined task is called function.
» Function is a small segment of program that carries out some specific and well-

defined task.

> A program segment that is placed separately from the main program is called

function,

> TFunctions are the building blocks ofa C program.

Advantages:
e It reduces the length of source program,
* Breaks the complexity of a program.

(Autonomous)
\Q:?_,_:_"? “ Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, V isakhapatnam)
Madhurawada :: Visakhapatnam — 530 048
Break small program into small program.
It is easy to maintain, modify and understand.
A program can be divided into smaller subprograms.
It facilitates top down modular programming.
It facilitates top down modular programming.
The length of the source program can be reduced using functions
Avoid rewriting the same sequence of code at two or more locations in a program.

g j) GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

Different Parameter Passing Methods: A function based on whether the Argument is
present or not, whether the value is returned or not.

Syntax: return_Type function_Name(parameter 1, parameter2, parameter3) {
// code to be executed

}

There are two primary methods for passing parameters to a function in many
programming languages:

e Call by Value (Pass by Value):
Explanation: When parameters are passed by value, a copy of the actual argument's value is
passed to the function's formal parameter. Any modifications made to the formal parameter
within the function do not affect the original actual argument in the calling function. This is
because the function operates on a sepatate copy.

Syntax:

void functionName(int parameter) {
parameter = parameter + 10;
i}nt main() {
mtx=35;
functionName(x); // x's value (5) is copied to parameter
// X remains 5
return 0
}
¢ Call by Reference (Pass by Pointer):
Explanation: When parameters are passed by reference (using pointers), the memory address
of the actual argument is passed to the function's formal parameter. The formal parameter is a
pointer that stores this address. This allows the function to directly access and modify the
original actual argument in the calling function through its memory address.

Syntax:
void functionName(int *parameter_ptr) {
// parameter_ptr holds the address of the original variable
*parameter_ptr = *parameter_ptr + 10; // Dereference to modify the original value

int main() {
intx=35;
functionName(&Xx); // Address of x is passed to parameter_ptr
// x is now 15
return 0

}

“ S\, GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

#’“ v (Autonomous)

R L J Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)

Madhurawada :: Visakhapatnam — 530 048

(b) Write a C program to find the sum of array elements using Pointers
[7M]
#include <stdio.h>
int main() {

int arr[] = {10, 20, 30, 40, 50}; // Declare and initialize an array

int size = sizeof(arr) / sizeof(arr[0]);

int sum = 0;

int *ptr = arr; // Declare a pointer and initialize

// Loop through the array using pointer arithmetic
for (int i = 0; i < size; i++) {
sum += *ptr;
ptr++;
}
printf("Sum of array elements: %d\n", sum); // Print the sum
return 0;
}
Output:

Sum of array elements: 150
(OR)

6. (a) Define recursion. Write a C program to find Fibonacci series upto 10 terms using
recursion. [7M]
When a function is called repeatedly until specific condition is satisfied, then it is known as
Recursion. A function is called recursive if a statement within the body of a function calls the

same function.
Program:
#include <stdio.h>
int fibonacci(int n) {
if(n<=1){
return n;

}

return fibonacci(n - 1) + fibonacci(n - 2);

int main() {
int terms = 10;
printf("Fibonacci Series (first %d terms):\n", terms);
for (int i = 0; i < terms; i++) {
printf("%d ", fibonacci(i));
}
printf("n");
return 0;
)
Output:
Fibonacci Series (first 10 terms): 01123 58 13 21 34

(b) With suitable example explain about dynamic memory allocation. [7M]
The concept of dynamic memory allocation in ¢ language enables the C programmer to
allocate memory at runtime. The process of allocating memory at runtime is known as
dynamic memory allocation. Library functions are used for allocating and freeing memory
during execution of a program. These functions are defined in stdlib.h. Dynamic memory
allocation in ¢ language is possible by 4 functions of stdlib.h header file.
1. malloc() 2.calloc() 3.realloc() 4. free()

= 8. GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
e (Autonomous)
\'\:-‘a___,_. ~/ ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
o Madhurawada :: Visakhapatnam — 530 048

Syntax
ptr=(cast-type*)malloc(byte-size)
Example
int *x;
x = (int*)malloc(100 * sizeof(int)); /memory space allocated to variable x
free(x); //releases the memory allocated to variable x

/*Read n numbers and find their sum */
#include<stdio.h>
#include<stdlib.h>
int main() {
int num, i, *ptr, sum = 0;
printf("Enter number of elements: ");
scanf("%d", &num);
ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc
if(ptr ==NULL) {
printf("Error! memory not allocated."),
exit(0);

printf("Enter elements of array: ");
for(i — 0; I < num; ++i) {
scanf("%d", ptr +1);
sum += *(ptr + i);

}
printf("Sum = %d", sum);
free(ptr);
return 0;
}
UNIT-IV
7. (a) With an example distinguish the concepts of Structures and Unions. [7 M]
Difference between Structures and Unions:
C Structures C Unions
Structure allocates storage space for all its | Union allocates one common storage space
members separately. for all its members. Union finds that which
of its member needs high storage space over
other members and allocates that much
space
Structure occupies higher memory space. Union occupies lower memory space over
structure.
We can access all members of structure at a | We can access only one member of union at
time. a time.
Structure example: Union example:
struct student { union student {
int mark; int mark;
char name[6]; char name[6];
double average; double average;
15 i
For above structure, memory allocation will | For above union, only 8 bytes of memory
be like below. will be allocated since double data type will
occupy

48 “, GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

&”) (Autonomous)

e 4 ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Vigakhapatnam — 530 048

int mark — 2B maximum space of memory over other data
char name[6] — 6B types. Total memory allocation=8 bytes
double average — 8B

Total memory allocation = 2+6+8 = 16 Bytes

Program: Program:

#include<stdio.h> #include<stdio.h>

#include<conio.h> #include<conio.h>

struct emp { union employee {

int id; int id;

name|36]; char name[50];

float sal; Yel; //declaring el variable for union

1 int main() {

void main() { el.id=101;

struct emp e; strcpy(el.name, "John");

printf("Enter employee Id, Name, Salary: "); //copying string into char array
scanf("%d",&e.id); printf("employee 1 id : %dwn", el.id);
scanf("'%s",&e.name); printf("employee 1 name : %s\n", el.name);
scanf("%f",&e.sal); rcturn 0;

printf("1d:%d",e.id); }

printf("\nName:%s",e.name); Output:

printf{"\nSalary: %f" e.sal); employee 1 id : 1869508435

getch(); employee 1 name : John

}

Output:

Enter employee 1d, Name, Salary:

5 John 45000

Id : 05

Name: John

Salary: 45000.00

(b) What are nested structures? Explain it with a program. [7 M]
A nested structure, particularly in programming languages like C, refers to a structure that
contains another structure as one of its members. This allows for the creation of more
complex and organized data types by grouping related data hierarchically.

Consider the information about aPersonneeds to be stored, including name, ID,
and Address. The Address itself is a collection of related data: street, city, and zip_code.

Example:
#include <stdio.h>
#include <string.h>
{/ Define the inner structure for Address
struct Address {
char street[50];
char city[50];
int zip_code;
1
// Define the outer structure for Person, which includes Address
struct Person {
char name[50];
int id;
struct Address person_address; // Nested structure member

|5

-

% GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

o
‘g:‘ J) (Autonomous)
\- 4 ‘Approved by AICTE, New Delhi and Permanenily Affiliated to Andhra University, Visakhapamam)

a——

Madhurawada :: Visakhapatnam — 530 048

int main() {
struct Person p1 = {" John", 202, {"143 Main St", "Milton Kings", 56789} };
/! Accessing members of the nested structure
printf("Person Name: %s\n", pl.name);
printf("Person ID: %d\n", p1.id);
printf("Address: %s, %s %d\n", pl.person_address.street, pl.person_address.city,
pl.person_address.zip code),
return 0;
i
OUTPUT:
Person Name: John
Person ID: 202
Address: 143 Main St, Milton Kings 56789

(OR)

(a) Apply the concept of structures and display the marks of the three students in three
different subjects [TM]
#include <stdio.h>
#include <string.h>
struct Student {

char name[50];

int roll number;

float subject] marks;

float subject2 marks;

float subject3 marks;

¥

int main() {

struct Student students[3];

/[Tnput data for each student
for (inti=0; i <3; it++) {

printf{"Enter details for student %d:\n", i + 1);
printf("Roll Number: ");

scanf("%d", &students[i].roll_number);
printf("Marks in Subject 1: ");

scanf("%d", &studentsfi].subject] _marks);
printf("Marks in Subject 2: ");

scanf("%d", &students[i].subject2_marks);
printf{"Marks in Subject 3: ");

scanf("%d", &students[i].subject3 marks);

// Display student information

}

printf("\nStudent Information:\n");
for (int i =0; i <3; i++) {
printf("Roll Number: %d\n", students[i].roll_number);
printf("Marks in Subject 1: %d\n", students[i].subject] _marks);
printf{"Marks in Subject 2: %d\n", students[i].subject2_marks);
printf{("Marks in Subject 3: %d\n", students[i].subject3_marks);
printf("\n");
}
return 0;

i ' N, GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

12 i‘ Y) (Autonomous)

N '—’_-'_-' v Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Visakhapatnam — 530 048

Enter details for student 1:

Roll Number: 1

Marks in Subject 1: 70

Marks in Subject 2: 80

Marks in Subject 3: 90

Enter details for student 2:

Roll Number: 2

Marks in Subject 1: 75

Marks in Subject 2: 85

Marks in Subject 3: 98

Enter details for student 3:

Roll Number: 3

Marks in Subject 1: 50

Marks in Subject 2: 60

Marks in Subject 3: 70

Output: Student Information:
Roll Number: 1

Marks in Subject 1: 70.00
Marks in Subject 2: 80.00
Marks in Subject 3: 90.00
Roll Number: 2

Marks in Subject 1: 75.00
Marks in Subject 2: 85.00
Marks in Subject 3: 98.00
Roll Number: 3

Marks in Subject 1: 50.00
Marks in Subject 2: 60.00
Marks in Subject 3: 70.00

(b) What about typedef and enumerated types. Write C program to find a particular day in a
week using enumerated types. [7M]

A. typedef : The typedef is a keyword that allows the programmer to create a new data type name for
an existing data type. The purpose of typedef is to redefine the name of an existing variable type.

Syntax: typedef datatype alias name;

Example of typedef:
#include<stdio.h>

void main()

{

typedef int digits;
digits a,b,sum;
printf{("Enter a and b values:");
scanf("%d%d",&a,&b);
sum=a+b;
printf("The sum is:%d",sum);
}

Output:

Enter a and b values: 5 10

Sum: 20

A
*{'_y (Autonomous)
\1‘.;_"2‘_!_.', . 4 ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnatn)
o Madhurawada :: Visakhapatnam — 530 048

B. Enumerations Type: An enum is a keyword, it is an user defined data type. All properties of
integer are applied on Enumeration data type so size of the enumerator data type is 2 byte. It work like
the Integer. It is used for creating an user defined data type of integer. Using enum we can create
sequence of integer constant value.

Syntax: enum tagname {valuel, value2, value3,....};
¢ In above syntax enum is a keyword. It is a user defiend data type.
¢ In above syntax tagname is our own variable. tagname is any variable name.
e valuel, value2, value3,.... are create set of enum values.
Example:
#include<stdio.h>
enum week {sun, mon, tue, wed, thu, fri, sat};
void main()
{
enum week today;
today=tue;
printf("%d day",today-+1);
}
Output:
3 day
UNIT-V
9.(a) Construct a C program using Files to copy the contents of one file to another file. [7 M]
#include<stdio.h>
#include<stdlib.h>
int main()
{
FILE *inputFile,*outputFile;
char ch;
char inputFileName[100],outputFileName[100];
printf(Enter the input file name: “);
scanf(“%s”, inputFileName);
printf(Enter the input file name: «);
scanf(“%s”, inputFileName);
inputFile = fopen("inputFileName","r");
if(inputFile= = NULL){
printf{(*Error opening input file\n™);
return 1;
outputFile = fopen("outputFileName","w");
if(outputFile = = NULL){
printf(“File is not available\n”);
felose(inputFile);
return 1;

}
while(ch = fgetc(inputFile) 1=EOF)

{
fputc(ch, outputFile);

}

printf(*File copied successfully\n”);
fclose(inputFile);
fclose(outputFile);

return 0; }

“ 3.: . GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
3 " “/,' (Autonomous)

e '—-:—:" ‘Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Visakhapatnam — 530 048

(b) Demonstarte random access to files with a suitable program using fseek(). [TM]

Random Access Files: Every open file has an associated file position indicator, which
describes where read and write operations take place in the file. The position is always
specified in bytes from the beginning of the file. The random access file handling, accesses
only the file at the point at which the data should be read or written, rather than having to
process it sequentially.

Three functions:
> long ftell(FILE *p);
> int fseek(FILE *fp, long offset, int from);
» void rewind(FILE *fp)
fseek(): The fseek() function is used to set the file pointer to the specified offset. It is used to
write data into file at desired location. The fseek() function moves the file pointer associated with
the stream to a new location that is offset bytes from origin.

Syntax: int fseek(FILE *stream_pointer, long offset, int origin);
Argument:
* stream_pointer is a pointer to the stream FILE structure of which the position indicator should
be changed,;
* offset is a long integer which specifies the number of bytes from origin where the position
indicator should be placed:
* origin is an integer which specifies the origin position. It can be:
e SEEK SET: origin is the start of the stream
e SEEK CUR: origin is the current position
e SEEK END: origin is the end of the stream
Program:
#include<stdio.h>
#include<stdlib>
void main (){
FILE *fp;
int length;
fp = fopen("file.txt", "1");
fseek(fp, 0, SEEK_END);
length = ftell(fp);

felose(fp);
printf("'Size of file: % bytes", length);
getch();
}
Output: Size of file: 21 bytes
(OR)
9. (a) Differentiate Text and Binary files with a program. [7TM]
File Opening Modes:
Modes Description Program
r opens a text file in read mode #include<stdio.h>
w opens a text file in write mode int main() {
a _opens a text file in append mode | int num;
r+ opens a text file in read and write | FILE *fptr;
mode fptr = fopen("program.txt",""r");
w+t opens a text file in read and write | printf("Enter num:)
| mode scanf("%d" . &num);

H:‘a‘ GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

! "\:' A) (Autonomous)
\\w,,____. -/:Appfoved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
- Madhurawada :: Visakhapatnam — 530 048
a+ opens a text file in read and write | fprintf(fptr,"%d" ,num);
mode fclose(fptr);
return 0;
}
rb opens a binary file in read mode #include<stdio.h>
wb opens a binary file in write mode int main() {
ab opens a binary file in append mode int num;
rb+ opens a binary file in read and write | FILE *fptr;
mode fptr = fopen("program.txt","rb");
wb+ opens a binary file in read and write | printf("Enter num: ");
mode scanf("%d",&num);
ab+ opens a binary file in read and write | fprintf(fptr,"%d",numy);
mode fclose(fptr);
return 0;
H
(b) Illustrate the working of file functions with a program. [7 M]

File handling in C allows programs to interact with files on the system, enabling operations like
creating, reading, writing, and closing files.

Basic Steps for File Handling:
Declare a file pointer: A pointer of type FILE* is declared to represent the file in the program.

Open the file: The fopen() function opens a file and returns a FILE* pointer. It takes the filename and
mode (e.g., "w" for write, "r" for read, "a" for append) as arguments.

Perform file operations: Functions like fprintf() (write formatted data), fscanf() (read formatted
data), fputc() (write a character), fgetc() (read a character), fgets() (read a line), and fputs() (write a

string) are used for data manipulation.

Close the file: The fclose() function closes the file, releasing the associated resources.

Program:
#include <stdio.h>

int main() {
FILE *fptr;
/[--- Writing to a file ---
fptr = fopen("abe.txt", "w"); / Open in write mode ("w")
if (fptr == NULL) {
printf("Error opening file for writing!\n");
return 1;
}
fprintf(fptr, "Hello from C file handling!\n"); // Write a string
fprintf(fptr, "This is a second line.\n");
fclose(fptr); // Close the file
printf("Data written to example.txt\n");
// --- Reading from a file ---
char buffer[100]; // Buffer to store read data
fptr = fopen("abe.txt", "r'"); // Open in read mode ("1")
if (fptr == NULL) {
printf("Error opening file for reading!\n");

4 .. GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
ﬁ") (Autonomons)
" Approved by AICTE, New Delhi and Permanently Affiliated to Andhra University, Visakhapatnam)
Madhurawada :: Visakhapatnam — 530 048
return 1;
}
printf("Content of abc.txt:\n");
while (fgets(buffer, sizeof(buffer), fptr) != NULL) { / Read line by line
printf("%s", buffer);

}
fclose(fptr); // Close the file
// - Appending to a file ---
fptr = fopen("abc.txt", "a"); / Open in append mode ("a"
if (fptr == NULL) {
printf("Error opening file for appending!\n");
return 1,
}
fprintf(fptr, "This line is appended.\n");
fclose(fptr);
printf("Data appended to example.txt\n");
// --- Reading again to see appended content ---
fptr = fopen("abe.txt", "r'");
if (fptr == NULL) {
priatf("Error opening file for reading after append!\n");
return 1;

}

printf("\nContent of abc.txt after appending:\n");

while (fgets(buffer, sizeof(buffer), fptr) I= NULL) {
printf("%s", buffer);

}
fclose(fptr);
return 0; // Successful execution

Prepared By Verified by p

)4/ iz S
i

(V Sree Vidhya) (R.Sridevi)

